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ABSTRACT

Rising concentrations of atmospheric CO; results in higher equilibrium concentrations of dissolved CO2 in
natural waters, with corresponding increases in hydrogen ion and bicarbonate concentrations and decreases in
hydroxyl ion and carbonate concentrations. Superimposed on these climate change effects is the dynamic nature
of carbon cycling in coastal zones, which can lead to seasonal and diel changes in pH and CO; concentrations that
can exceed changes expected for open ocean ecosystems by the end of the century. Among harmful algae, i.e.
some species and/or strains of Cyanobacteria, Dinophyceae, Prymnesiophyceae, Bacillariophyceae, and Ulvo-
phyceae, the occurrence of a CO3 concentrating mechanisms (CCMs) is the most frequent mechanism of inorganic
carbon acquisition in natural waters in equilibrium with the present atmosphere (400 pmol CO» mol ™! total
gas), with varying phenotypic modification of the CCM. No data on CCMs are available for Raphidophyceae or
the brown tide Pelagophyceae. Several HAB species and/or strains respond to increased CO2 concentrations with
increases in growth rate and/or cellular toxin content, however, others are unaffected. Beyond the effects of
altered C concentrations and speciation on HABs, changes in pH in natural waters are likely to have profound
effects on algal physiology. This review outlines the implications of changes in inorganic cycling for HABs in
coastal zones, and reviews the knowns and unknowns with regard to how HABs can be expected to ocean
acidification. We further point to the large regions of uncertainty with regard to this evolving field.

1. Introduction

Hallegraeff, 1999; Gobler and Sunda, 2012) and macroalgae such as
Ulva (‘green tides’) and Sargassum (‘golden tides’) (Hayden et al., 2002;

“Harmful algae” include toxin-producing marine phytoplankton
which are mainly comprised of dinoflagellates, many of which are
mixotrophic, including some that are kleptoplastidic (e.g. Medlin and
Cembella, 2013; Stoecker et al., 2017) and the diatom Pseudo-nitzschia
(e.g. Brunson et al., 2018). Also toxin-producing are the marine phyto-
planktonic prymnesiophycean Prymnesium parvum (Manning and La
Claire, 2010), marine phytoplanktonic raphidiophyceans (Khan et al.,
1987) and freshwater (and estuarine, coastal and open ocean)
toxin-producing cyanobacteria (e.g. Cox et al., 2005; Schock et al., 2011;
O’Neil et al., 2012; Codd et al., 2015; Huisma et al., 2018; Lines and
Beardall, 2018). “Harmful algae” also include ecosystem-disruptive
marine microalgae (e.g. members of the Pelagophyceae; Marshall and

Smetacek and Zingame, 2013; Xu et al., 2017). Harmful algal blooms
represent an expanding threat to human health, aquatic life, and econ-
omies in marine and freshwater ecosystems across the globe (Anderson
etal., 2012; O’Neill et al., 2012). As HABs have expanded across during
the past half-century (Anderson et al., 2015; Gobler et al., 2017), levels
of atmospheric and surface water CO, concentrations have concurrently
increased by more than 25% (Doney et al., 2012). Changing levels of
dissolved inorganic carbon in surface waters may impact phytoplankton
inorganic carbon fixation (Badger et al., 1998; Giordano et al., 2005;
Raven et al., 2017). Thus, rising CO, concentrations in surface waters
may potentially contribute to the global expansion of HABs (i.e. fertil-
ization effect; Hallegraeff, 2010; Fu et al., 2012; Flynn et al., 2015. The
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extent to which any phytoplankton may benefit from rising dissolved
CO4 concentrations associated with climate change, however, will be
dependent upon a complex myriad of physiological, ecological, and
biogeochemical factors. The goal of this review is to describe the dis-
solved inorganic carbon (DIC) system in aquatic systems as it relates to
photosynthesis, to contextualize the dynamics of DIC in coastal eco-
systems where HABs occur, and to assess how changing dissolved CO,
concentrations and pH levels may influence harmful algae and the
occurrence of HABs.

2. Natural variation of inorganic carbon and pH, and the role of
climate change

Understanding of the impact of the dissolved inorganic carbon sys-
tem, and its short-and long-term variations on phytoplankton, in gen-
eral, and harmful algae, in particular, involves consideration of the
dissolved inorganic carbon system in marine and freshwater habitats
(Zeebe and Wolf-Gladrow, 2001; Falkowski and Raven, 2007; Riebesell
et al., 2010). The molecular and ionic species involved are atmospheric
and dissolved CO, (carbon dioxide), and dissolved H,CO3 (carbonic
acid), dissolved HCO3 (bicarbonate) and CO%’ (carbonate), and solid
CaCOs (calcium carbonate) (Zeebe and Wolf-Gladrow, 2001; Falkowski
and Raven, 2007; Riebesell et al., 2010) (Table 1). Net conversion
among the dissolved inorganic carbon species involves changes in
H'/OH-, i.e. pH. It is important to recognise that the pH changes are an
outcome of biologically induced and other changes in the dissolved
inorganic carbon system and, to a lesser extent in other solutes. H,COs is
the least well-characterised of these components of the inorganic carbon
system (Reddy and Balasubramanian, 2004; Adamczyk et al., 2009;
Bucher and Sander, 2014; Jakubowska and Szelag-Wasilewska, 2015;
Pines et al., 2016), but the available evidence indicates that H,COs is not
directly involved in algal metabolism. The available evidence shows for
the green tide alga, Ulva, CO%’ does not inhibit HCO3 use in photosyn-
thesis, and is not used (in the sense of entering photosynthetic cells) in
photosynthesis (Maberly, 1992). There seem to be no recent attempts to
examine the influence of CO% on photosynthesis by phytoplankton;
inhibitory effects are difficult to distinguish from those of high pH,
discussed below. In contrast, HCO3- and CO, are both involved in
various versions of carbon transport and metabolism in photosynthesis.

The IPCC (Intergovernmental Panel for Climate Change) AE4 2007
projected that the pH in surface waters in the open ocean will decrease
(‘ocean acidification’: see below) from the present 8.05 to 7.75-7.95 as a
result of rising atmospheric CO; concentrations, with surface ocean COy
concentrations increasing from 400 to 550-950 pmol mol ! by year
2100 (Figure 10.23 of IPCC, 2007; see also The Royal Society, 2005).
IPCC, 2013 ARS5 (Technical Summary TS20) suggests Ocean surface pH
of 8.19 in 1850 and predicts pH 7.78-8.05 by the year 2100). The
projections of the future CO, concentration and pH are, however, based

Table 1

Inorganic carbon speciation in seawater in equilibrium with extant and future
CO, mole fractions at 20 °C (Gao et al., 2018a,b). In freshwater, for the same gas
phase CO, mol fraction, the greater CO, solubility, the higher pK,; and, espe-
cially, the higher pK, of the inorganic carbon system means that, at a given
temperature and pH, the concentration of dissolved CO, is higher, and HCO3
and, especially, CO%’ is lower (Falkowski and Raven, 2007).

Atmospheric CO2
400 pmol CO, mol !

Atmospheric CO,
1000 pmol CO, mol !

Dissolved inorganic 2030 2118
carbon pmol kg ™!

CO, pmol kg™? 12.6 33.7

HCO3 pmol kg 1827 2005

CO3~ pmol kg 175 79

Titratable alkalinity 2263 2199
pmol kg~ !

pH 8.19 7.82
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on changes in the open tropical ocean (present day data on atmospheric
CO2 from the Mauna Loa Observatory, Hawai’i). Open ocean waters
contain 2.2-2.4 mol m™ DIC (dissolved inorganic carbon) although
levels can be lower in the upper photic zone due to uptake by the pri-
mary producers (e.g. Marchal et al., 1996). pH affects the speciation of
inorganic carbon species and at present ocean pH values, very little is
available as CO (typically’7-20 mmol m3). CO, per volume is similar in
the sea level atmosphere and dissolved in the surface ocean (with more
dissolved CO- at lower temperatures), but the diffusion coefficient for
COo, the immediate inorganic carbon substrate for RuBisCO (Ribulose
bisphosphate carboxylase-oxygenase), the carboxylase involved in the
Calvin-Benson cycle in seawater is 10* times slower than that in the
atmosphere (Falkowski and Raven, 2007). This is probably the evolu-
tionary reason for the occurrence of CO2 concentrating mechanisms
(CCMs) in many marine (and freshwater) algae (Badger et al., 1998;
Raven et al., 2017). CCMs actively transport HCOs- and/or CO» from the
surrounding water to the site of Rubisco, raising the steady-state CO4
concentration there to values higher than those in the water, and
increasing the extent to which the carboxylase activity of Rubisco is
saturated with COo, and decreasing the oxygenase activity (Badger et al.,
1998; Giordano et al., 2005; Raven et al., 2017). When active transport
involves HCOs-, the inorganic species present at highest concentrations
in seawater, intracellular carbonic anhydrase is essential to convert
HCOs- to CO; sufficiently rapidly. Diffusive CO, entry occurs in a mi-
nority of marine, and a rather greater fraction of freshwater, photo-
synthetic organisms (Badger et al., 1998; Giordano et al., 2005; Raven
et al., 2017; Shen et al., 2017). The larger fraction of freshwater algae
dependent on diffusive COy entry could20 be related to the greater
solubility of CO2 in lower-salinity waters, as well as the relatively
greater input of inorganic carbon resulting from terrestrial productivity
(Maberly, 1996; Falkowski and Raven, 2007). Less than a third of
terrestrial primary productivity is carried out by organisms expressing
CCMs (Still et al., 2003); most of these CCMs involve C4 photosynthesis
(Raven et al., 2017). For harmful algae, active transport of inorganic
carbon for fixation by Rubisco involves uptake of HCO3- as well as CO4
in red tide dinoflagellates (Rost et al., 2006), toxic diatoms (Trimborn
et al., 2008), and all (i.e. including toxic) cyanobacteria (Raven et al.,
2017); this is discussed in more detail below in the section, Effects of
variations in the inorganic carbon system on algal photosynthesis and growth.

The dissolved inorganic carbon system functions as a buffer against
pH changes so variations in the upper water column of open ocean
waters are minimal (< 0.1 pH units; Doney et al., 2009; Duarte et al.,
2013), at least in tropical and subtropical waters. However, the varia-
tions may be considerably higher in systems with seasonality as in
temperate waters (the North Sea; 0.2 pH units; Salt et al., 2013) and
Arctic waters with an ice cover (and hence no CO, exchange with the
atmosphere) during the boreal winter (West coast of Greenland, 0.8 pH
units; Thoisen et al., 2016). A further influence on CO; in high latitude
waters is the impact of fresh water from glacial melting which increases
(at a given temperature) COy solubility; however, the meltwater is
significantly undersaturated with CO», so in coastal waters continuous
melting maintains undersaturation (Meire et al., 2015). Similarly, a se-
ries of biogeochemical processes in coastal zones lead to large pH
variation on a seasonal and even daily basis or across a vertically
stratified water column (>1 pH unit; Fig. 1; Wallace et al., 2014; Bau-
mann et al., 2015; Baumann and Smith, 2017).

While marine HABs can occur anywhere in the World’s Oceans,
chemical (e.g. enhanced nutrient loading) and physical (e.g. shallow
water, low flushing rates) factors makes them predominantly features of
coastal zones. Within these regions, inorganic carbon pools can be
highly dynamic (Cai, 2011). It is well-known that the progressive rise in
atmospheric CO and its equilibration with the oceans is increasing the
concentration of dissolved CO, and HCO3 and H' and decreasing the
concentration of OH™ and CO%, the phenomenon known as ocean
acidification (Doney et al., 2009, 2012). Within coastal regions, there
are a myriad of other significant sources of inorganic carbon that can
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Fig. 1. Monthly changes in pH measured on the NBS scale in Long Island Sound, 2011, the third largest estuary in the USA. Vertical section plots extend from New
York City in the western extreme to Block Island to the east (adopted from Wallace et al., 2014).
Diurnal changes in pH on the total scale as measured in Shinnecock Bay, NY, USA, August 2016, which hosts HABs caused by Alexandrium catenella, Aureococcus

anophagefferens, and Cochlodinium polykrikoides.

also promote acidification. Along many coastlines, rivers are acidic and
capable of significantly depressing calcium carbonate saturation and
increasing concentrations of CO, within marine coastal zones (Cai et al.,
2008; Salisbury et al., 2008; Waldbusser and Salisbury, 2014). Cai et al.
(2009) demonstrated that only two of the 25 largest (by discharge)
rivers have significantly higher HCO3 concentrations than does open
ocean seawater. An extreme case is the Baltic Sea, dominated by riverine
inputs rather than exchange with the North Atlantic, where values as
low as 1.2mol m™ or 40% lower than ocean water can be found
(Thomas and Schneider, 1999). These low HCO3 concentrations in
riverine inputs to coastal waters are despite significant anthoropogenic
increases in the inorganic carbon content of lakes (Perga et al., 2016)
and rivers (Jarvie et al., 2017). Such low DIC concentrations lead to a
much lower pH buffering capacity, making such coastal zones more
vulnerable to pH changes as biological processes removes or adds COy
(Cai, 2011; Waldbusser and Salisbury, 2014; Gledhill et al., 2015).
Upwelled waters, originating from the deep ocean where biological
mineralisation of sinking organic matter enriches the water in CO,, in
coastal zones are typically highly enriched in dissolved CO; (Feely et al.,
2008, 2010). Furthermore, most estuaries are net heterotrophic eco-
systems where rates of respiration exceed rates of gross photosynthesis
(Caffery, 2004; Del Giorgio and Williams, 2005), leading to
super-saturated concentrations of CO; resulting in decreased pH
(Melzner et al., 2013; Wallace et al., 2014; Cai et al., 2011, 2017). Such
coastal acidification is becoming increasingly recognized as seasonal
increases in the concentrations of CO, and H', and decreases in calcium
carbonate saturation in some coastal zones (pH < 7.7t, CO> in equilib-
rium with an atmosphere of more than 1000 pmol mol ™}, Qaragonite <1;
Melzner et al., 2013; Wallace et al., 2014; Cai et al., 2011, 2017) already

exceed the predicted extremes in the future open ocean associated with
projected climate change (Doney et al., 2012; Duarte et al., 2013).

An ecological niche of many HABs is turbid estuaries where light
levels are low, but organic matter is enriched (Sunda et al., 2006; Gobler
et al,, 2011). Beyond the natural turbidity present in estuaries, the
pigmented biomass found in many HABs can create extreme turbidity
and thus low light conditions in the water column (Gobler et al., 2005;
Sunda et al., 2006). These conditions decrease photosynthesis, thus
increasing the relative influence of respiration by the HAB algae, and
decreasing or reversing the role of HAB algae in decreasing the external
CO9 concentration. Many HAB species, e.g. many dinoflagellates, and
including those that are low light adapted, are mixotrophic. Such algae,
in addition to photosynthesis, catalyse the entry, metabolism, and use
for growth of dissolved organic compounds (osmotrophy) or particulate
organic carbon (phagotrophy) (Burkholder et al., 2008; Stoecker et al.,
2017; Flynn et al., 2018). As a consequence of these trophic modes,
external pH will not increase as much per unit growth of HAB as would
occur with purely autotrophic growth. Furthermore, Eberlein et al.
(2014) demonstrated that dark respiration increases while net photo-
synthesis decreases in Alexandrium tamarense under elevated CO, con-
centrations, changes that would contribute to increasing COq
concentrations over the course of Alexandrium blooms, a phenomenon
observed and reported by Hattenrath-Lehman et al. (2015).

While many factors have been attributed to the global expansion of
HABEs, excessive nutrient loading to coastal waters is frequently cited as
a primary factor promoting many of these events (Anderson et al., 2002;
Heisler et al., 2008). Interestingly, some of the coastal processes that
promote acidification in coastal zones also deliver high levels of inor-
ganic nutrients, thus potentially creating a synergistic opportunity for
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the intensification of HABs. Rivers are major sources of nutrients such as
phosphorus and combined nitrogen (Tappin, 2002), as well as CO (Cai
et al., 2008; Salisbury et al., 2008), and some HABs are known to
develop near riverine outflow (Heil et al., 2007; Paerl et al., 2008; Zhou
et al., 2008). Upwelling zones involve advection from the deep, miner-
alising waters to the surface ocean; this upwelled seawater is enriched in
CO,, as well as HPO3~ and NO3-, and a diversity of HABs develop within
upwelling zones (Pitcher and Weeks, 2006, 2018). Some develop within
the advected CO, water while others develop after an initial
upwelling-stimulated bloom subsides, and thus occurs in water
pre-conditioned with high levels of DOM (Pitcher and Weeks, 2006,
2018). Nutrients from remineralization of organic matter within estu-
aries are thought to specifically select for the growth of many species of
harmful alga (Anderson et al., 2002; Heisler et al., 2008; Glibert, 2017;
Glibert and Burford, 2017) and the process of utilizing these reminer-
alized nutrients may promote acidification. For example, NHJ uptake
and assimilation results in the excretion of one H" molecule per NHJ
molecule to maintain the acid-base balance of the cells and subsequently
decreases external pH and increases CO, (Brewer and Goldman, 1976).
Given the Redfield atomic ratio, the inorganic C influx will be 6.6 times
that of NHj (Brewer and Goldman, 1976) and thus the acidifying effects
of the assimilation of NHJ only partly offsets the alkalinising effect of
inorganic carbon assimilation. In contrast, assimilation of NOs- yields
one OH- molecule effluxed per NO3- molecule assimilated (Brewer and
Goldman, 1976), thus increasing external pH. The intensity of acidifi-
cation within estuaries may be associated with multiple factors
including their degree of eutrophication with higher nutrient loading
rates promoting more organic enrichment and seasonal acidification,
and flushing rates with well-flushed estuaries being less likely to retain
acidified water. Expanses of salt marshes and/or mangroves may also
influence acidification as these ecosystems are well-known for their high
respiration rates in the substrate and overlying water (Caffery, 2004;
Baumann et al., 2015). These complex interactions deserve further
investigation.

The timing of some HABs also suggests they may develop in acidified
environments, at least in shallow regions. During the spring bloom of
diatoms, rapid rates of primary production can decrease dissolved CO5
concentration and create a subsequent basification (increased pH) of the
water column (Nixon et al., 2015). In some temperate zones, however,
HABs do not co-occur with the spring bloom, but rather develop after its
demise, which releases large stocks of organic matter (Sunda et al.,
2006) that enhance microbial respiration and the production of dis-
solved COy (Wootton et al., 2008). The peak of annual acidification may
appear during warmer months when respiration rates are maximal
(Fig. 1; Melzner et al., 2013; Wallace et al., 2014), thermal stratification
is most likely, and several temperate HABs commonly occur (Sunda
etal., 2006; Heil et al., 2007; Kudela and Gobler, 2012). Alternatively, as
explained below, some coastal zones with HABs are prone to
basification.

The persistence of acidification in coastal zones can vary from hours
to months, depending on the rate of respiration, the geomorphology of
the region, tidal flushing, the depth and structure of the water column,
and other factors related to the hydrodynamics of a given water body. In
shallow, well-mixed coastal zones with high rates of respiration, acidi-
fication can occur on a diel basis, because maximal photosynthetic rates
during the day result in high dissolved oxygen and pH levels, while the
cumulative effects of respiration during night decrease dissolved oxygen
concentration and pH values to predawn minima (Wootton et al., 2008;
Baumann et al., 2015; Baumann and Smith, 2017). The extent of this
process can be related to the depth of the water column, given that
sediments are known to be major sources of CO, (Green and Allen, 1998)
and their influence is likely to be inversely proportional to the depth of
the water column. Given the propensity of many HAB algae to undergo
diel vertical migration to assimilate nutrients (Doblin et al., 2006), it
seems likely that such algae will be exposed to lower pH and elevated
concentrations of dissolved CO» at night. NHj (or NO3) assimilation
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needs anaplerotic inorganic carbon assimilation but this would be
saturated in the dark by air-equilibrium seawater (Amory et al., 1991;
Falkowski and Raven, 2007). Superimposed upon diel changes in net
metabolism in coastal zones are the actions of tides. In general, low tides
are likely to maximize the influence of local metabolic rates on carbon
dioxide concentration while high tides may bring less acidified water if
the incoming water mass originates from a region further from land with
lower concentrations of dissolved CO» and dissolved and particulate
organic matter, less benthic influence, and lower rates of respiration
(Waldbusser and Salisbury, 2014; Baumann et al., 2015). The precise
dynamics of dissolved CO; in coastal zones are highly complex and will
differ among coastal regions. It is unlikely that they will be fully char-
acterized in the near future, but are likely to influence the growth and
photosynthesis of some HABs.

As climate change progresses, the effects of atmospheric CO5 on
coastal acidification will increase in a non-linear fashion, leading to
acidification becoming even more significant in temperate and, espe-
cially, tropical coastal zones (Sunda and Cai, 2012). Modelling efforts
have shown that under future climate change scenarios, synergistic in-
teractions may occur between CO5 from atmospheric sources and from
the respiration of organic matter, especially at higher temperatures
(Sunda and Cai, 2012). As a consequence, the buffering capacity of some
ocean regions may be overwhelmed, resulting in degree of acidification
that is non-additive and greater than would have been predicted from
the CO; loading by each individual source (Sunda and Cai, 2012). This
may make temperate and tropical estuaries even more vulnerable to
coastal acidification, as they warm and experience the synergistic effects
of acidification driven by both respiration and increased atmospheric
CO,, with the latter decreasing the outgassing of respired CO,. At high
latitudes the larger increases in temperature, but still lower overall
temperatures, suggests that the overall impact on HABs may be smaller.
It is important to re-emphasis that environmental drivers may differ
among global regions.

In addition to acidification, high nutrient levels in coastal zone that
drive high rates of primary production can also lead to basification, with
high pH and low pCO; (Nixon et al., 2015). As a consequence, in some
eutrophicated estuaries, semi-enclosed fjords and lagoons the pH values
vary from 7.2 to 9.75 as a function of season, latitude, and depth (e.g.
Fig. 3; Hinga, 2002; Macedo et al., 2001; Hansen, 2002). During summer
at high latitudes, extended and even 24 h photoperiods will maximize
the influence of photosynthesis and keep pH levels high (>9), especially
within surface waters (Fig. 3; Hansen, 2002). Thus, to properly evaluate
the consequences of climate changes for a given location, the natural
variations in pH that occur during period of low respiration and pro-
ductivity and the variations in the inorganic carbon system that underlie
it, should be taken into account.

For inland waters where many toxic cyanobacterial blooms occur,
there is a latitudinal trend in large lakes from net autotrophic (atmo-
spheric CO; sinks) at low latitudes to net heterotrophic at higher lati-
tudes with greater dependence of food chains on allochthonous organic
carbon input (Alin and Johnson, 2007). There are large diel and seasonal
variation in pH and CO5 concentration in some lakes; Maberly (1996)
found diel variations in pH of up to 1.8 pH units and an annual change
from 7,3 to nearly 10.1 pH units near the surface of Esthwaite Water in
the English Lake District. Global anthropogenic effects increasing lake
surface CO; has been shown for the smaller lakes studied (Perga et al.,
2016). Trophic status can also strongly effect the dynamics of CO in
lakes with eutrophic lakes being more likely to be undersaturated in
CO9, at least during summer, due to rapid rates of photosynthesis
(Maberly, 1996; Trolle et al., 2012).

3. Effects of variations in the inorganic carbon system on algal
photosynthesis and growth

All oxygenic photosynthetic organisms have Rubisco as the carbox-
ylase underlying their autotrophy (Raven et al., 2017; Bathellier et al.,
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2018). Organisms with CCMs (Fig. 2) have higher in vivo CO. affinity
than is the case for organisms relying on CO, diffusion to Rubisco,
assuming identical Rubisco kinetics and Rubisco content (Raven et al.,
2017). Only a small fraction of the work on the effects of CO; availability
on algal metabolism and growth has focussed on HAB-forming algae.
From what is known of the phylogeny of HAB-forming algae and of the
occurrence of CCMs it appears that HAB-forming algae generally have
CCMs. More work is needed to determine if this prediction is correct.
The cyanobacterial Form IA or IB Rubiscos, and especially the Form II
Rubisco of the phylogenetically basal (peridinin-containing) di-
noflagellates, have very low COs affinities and CO4:0, selectivities; the
affinity (expressed in terms of external CO3) of cyanobacterial CCMs is,
however, much higher than those of dinoflagellates (Griffiths et al.,
2017; Raven et al., 2017). Other eukaryotic algal Rubiscos (Form IB in
the ‘green’ line of evolution and Form ID in the ‘red’ line of evolution,
including fucoxanthin-containing dinoflagellates such as Karenia) have
higher CO; affinities and CO,:05 selectivities than both cyanobacteria
and (basal) dinoflagellate Rubiscos (Griffiths et al., 2017; Raven et al.,
2017; Bercel and Kranz, 2019; Shen et al., 2017). However, in cases
where the algae with these Rubiscos also have CCMs, the CO affinities
of their CCMs are generally lower than is the case for the CCMs of
cyanobacteria (Griffiths et al., 2017; Raven et al., 2017; Lines and
Beardall, 2018; Bercel and Kranz, 2019). Ji et al. (2017) and Beardall
and Raven (2017) discuss the extent to which the affinity of CCMs for
inorganic carbon among phytoplankton organisms could influence
evolutionary fitness among the range of other relevant environmental
factors; these data are further discussed below. Among harmful algae, all
cyanobacteria and dinoflagellates have and express CCMs, as do most, if
not all, prymnesiophyceans, diatoms and ulvophyceans, in natural wa-
ters at equilibrium with the present atmosphere (400 pmol CO, mol ™!
total gas), with varying phenotypic modification of the CCM (Hall--
Spencer and Allen, 2015; Griffiths et al., 2017; Raven and Giordano,
2017; Raven et al., 2017; Wilkes et al., 2017).

Jietal. (2018) suggested that a harmful raphidophycean has a CCM,
based on the up-regulation of transcription of three carbonic anhydrase
genes in the photoperiod; this is not adequate for demonstration of a
CCM. Ji et al. (2018) provide no data on the occurrence of a mechanism
for energized (other than by energized Rubisco and other Calvin Benson
Bassham cycle activity generating gradient for diffusive entry of CO3)

co,

CA

oosiqny

HCO;-

Fig. 2. Generalised diagram of inorganic carbon acquisition by eukaryotic algal
cells using a CO, concentrating mechanism (denoted by ‘Pump’). CO,
concentrating mechanism actively transporting CO, and/or HCO3 into the
cytoplasm and chloroplast (denoted in green). Active (= energized, uphill)
HCO3 occurs at the plasmalemma and/or the chloroplast, with carbonic
anhydrase (CA) in the chloroplast compartment containing Rubisco, i.e. the
chloroplast stroma or the pyrenoid (a sub-compartment of the stroma). CA may
also be present on the cell surface outside the plasmalemma (outer black circle).
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article).
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Fig. 3. Surface pH values within the Mariager Fjord, Denmark, as reported in
Hansen (2002). pH can reach very high values in coastal eutrophic waters
during summer due to.

the photosynthetic activity of algal blooms and near-constant sunlight, maxi-
mizing the influence of photosynthesis. pH was measured usinga glass eletrode
calibrated with buffers at pH 7.0 and at pH 10.0.

transport of inorganic carbon, an essential feature of CCMs (Raven and
Giordano, 2017; Raven et al., 2017). The study of Clark and Flynn
(2000) on the photosynthetic affinity for inorganic carbon of marine
phytoplankton shows that the raphidophycean Heterosigma akashiwo
had the lowest inorganic carbon affinity of any of the ten species of
phytoplankton examined, and the investigation of the in vitro CO; af-
finity of Rubisco of Olisthodiscus luteus showed a moderate affinity
(Newman et al., 1989). Neither of these data sets give conclusive evi-
dence on the occurrence of a CCM in these raphidophyceans. The data
on the toxic marine prymnesiophycean Prymnesium parvum (Lysgaard
et al., 2018) is also inconclusive with regard to the possession of a CCM.
No data seem to be available for the brown tide pelagophyceans (Gobler
and Sunda, 2012; Raven and Giordano, 2017). More work on the
Raphidophyceae, Pelagophyceae and Prymnesium to determine if they
have CCMs.

The high in vivo CO, affinities discussed above are for organisms
grown in media in equilibrium with the extant atmospheric COy of
400 pmol CO; per mol total gas. Much of the work on variations in CO,
on the physiology of algae has focussed on the effects of anthropogenic
increase in CO; on specific growth rates (Ratti et al., 2007; De Paula
Silva et al., 2013; Lapointe et al., 2008; Trimborn et al., 2013; Sandrini
etal., 2014; Hattenrath-Lehman et al., 2015; Hoins et al., 2015, 2016a,b,
Thoisen et al., 2015; Richier et al., 2018; Zhu et al., 2017; Lysgaard
et al., 2018; Brunson et al., 2018). Doney et al. (2012) and Raven et al.
(2017) point out that global environmental change involves increased
temperature of the upper mixed layer, shoaling of the thermocline and
increasing temperature difference across the thermocline. These global
effects result, for phytoplankton, in an increased mean flux of photo-
synthetically active radiation and UVB, and increased temperature, and
decreased availability of iron, phosphorus and combined nitrogen
(Doney et al., 2012; Raven et al., 2017); there are also local changes in
DIC and nutrients.

There are many studies on algae, some on HAB species, involving the
interaction of increased DIC with changes in other factors that often co-
occur with increased DIC. The interaction of DIC with increased tem-
perature has been studied by, for example, Fu et al. (2012); Tatters et al.
(2013); Erera et al. (2014); Kiibler and Dudgeon (2015); Guanyong et al.
(2017); Wells et al. (2015); Raven et al. (2017); Mardones et al. (2017);
Boyd et al. (2018) and Roth-Schulze et al. (2018). There have also been
investigations of the interaction of increased DIC with local anthropo-
genically increased availability of combined nitrogen and of phosphorus
and ocean warming-related decreased combined nitrogen and phos-
phorus by shoaling and steepening of the thermocline (e.g. Sun et al.,
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2011; Tatters et al., 2012a,b; Eberlein et al., 2016; Raven et al., 2017;
Reidenbach et al., 2017). Finally, there have been studies of increased
DIC with changed photosynthetically active radiation and increased
UV-B (e.g. Gao and Campbell, 2014; Raven et al., 2017).

Some of these studies of interactions of increased DIC with other
environmental factors have involved toxin-producing HAB algae (Mac-
intyre et al., 2011; Tatters et al., 2012a,b; Fu et al., 2008; Visser et al.,
2016; Guanyong et al., 2017; Glibert, 2019). Other studies of the
interaction of increased DIC with other environmental factors have
involved nuisance green tide algae (Raven and Taylor, 2003; Gao et al.,
2016; Young and Gobler, 2016; Reidenbach et al., 2017; Gao et al.,
2018a,b) algae, as well as the introduced ‘Killer Alga” Caulerpa taxifolia
(Roth-Schulze et al., 2018; see also Kevekordes et al., 2006).

Ji et al. (2017; see commentary by Beardall and Raven, 2017)
showed that the freshwater toxin-producing Microcystis was less
competitive with green microalgae at low CO, than at high COy; the
competitive order among four algae studied at low CO, was Scene-
desmus > Chlorella > Microcystis > Monoraphidium, while at high COy
the order was Microcystis ~ Scenedesmus > Chlorella > Monoraphidium.
There are also reports of increased cellular toxin content in several algae
under increased COy and interactions of COq availability with avail-
ability of other nutrients (Van de Waal et al., 2009; Fu et al., 2010; Sun
et al.,2011; Tatters et al., 2012a,b; Hattenrath-Lehman et al., 2015;
Bercel and Kranz, 2019). Van de Waal et al. (2011a,b) stoichiometric
argument for toxin synthesis suggests that the synthesis of C-rich toxins
(e.g. domoic acid) might be promoted under high CO, availability as a
means to provide internal elemental balance and there have been several
studies to support this concept (e.g. Van de Waal et al., 2009; Fu et al.,
2010; Sun et al., 2011; Brunson et al., 2018). In contrast, there have also
been studies documenting an increased saxitoxin content in Alexandrium
spp., despite the N-rich nature of this molecule (Tatters et al., 2013;
Hattenrath-Lehman et al., 2015). Given excess nitrogen was available in
the medium during these experiments, there may be an increase in cell
size leading to an increase in cellular saxitoxin content (Tatters et al.,
2013; Hattenrath-Lehman et al., 2015). The data discussed here are
consistent with an interaction between increased CO5 and increased
toxin production in toxic algae; more work is needed.

High algal productivities resulting from environmental factors other
than increased CO; lead to increased hydroxyl ion and carbonate con-
centrations, and decreased hydrogen ion, bicarbonate and COy con-
centrations. Several studies have involved freshwaters (Maberly, 1996;
Talling, 2006; Van de Waal et al., 2009, Van de Waal et al., 2011a,b;
Sandrini et al., 2015a, 2015b,2016). Other studies have involved marine
habitats (Poole and Raven, 1997; Raffaelli et al., 1998; Raven and
Taylor, 2003; Middelboe and Hansen, 2007; Trimborn et al., 2008;
Semesi et al., 2009; Van de Waal et al., 2009, Van de Waal et al., 2011a,
b; Berge et al., 2012; Flores-Moya et al., 2012; Saderme et al., 2013).

Some of these studies were specifically in the context of harmful
algae (Poole and Raven, 1997; Raffaelli et al., 1998; Raven and Taylor,
2003; Trimborn et al., 2008; Van de Waal et al., 2009, Van de Waal et al.,
2011a,b; Berge et al., 2012; Flores-Moya et al., 2012; Sandrini et al.,
2015a, 2015b,2016). The environmental factors other than increased
CO;, that allow high algal productivities include high (but not inhibitory)
concentrations of bioavailable nutrient elements other than C, high (but
not inhibitory) fluxes of photosynthetically active radiation, low fluxes
of UVB, limited impact of herbivores, and viruses and limited mixing
with water bodies permitting lower productivity (Smayda, 1997a, b).
Extended residence times of water bodies can also promote algal blooms.
Examples of very limited exchange are rock pools in marine habitats
with a small tidal range, e.g. within the Mediterranean (Calabetti et al.,
2017).

In considering the effects of CO, variations on the photosynthesis,
growth, and metabolism of harmful algae it is well-known that many
harmful microalgae have mixotrophic potential using osmotrophy and/
or phagotrophy (Burkholder et al., 2008; Jeong, 2011; Lim et al., 2018).
Osmotrophy, involving the uptake and assimilation of dissolved organic
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carbon, does not always result in net organic carbon entry since there is
also dissolved organic carbon loss from photosynthetic algae
(Lopez-Sandorval et al., 2013; Thornton, 2014); however, it is important
in the brown tide pelagophycean alga Aureococcus anophagefferens
(Lomas et al., 2001; Gobler and Sunda, 2012), toxin-producing cyano-
bacteria (Dai et al., 2009), and other harmful algae (Burkholder et al.,
2008). Phagotrophy is only an option for eukaryotes without a complete
cell wall, e.g. many toxic dinoflagellates (e.g. Burkholder et al., 2008;
Carvalho et al., 2008; Lim et al., 2018), Prymnesiophyceae (Burkholder
et al., 2008; Carvalho and Granéli, 2010; Brutemark and Granéli, 2011;
Carvalho and Granéli, 2011; Vidyarathna et al., 2014) and Raphido-
phyceae (Burkholder et al., 2008; Jeong, 2011), but not toxic diatoms.
For harmful macroalgae, bacterial associations (not phagotrophy) in-
fluence morphogenesis of Ulva (Hayden et al., 2002; Wichard et al.,
2015) into morphologies that are involved in ‘green tides’ and also alter
the external diffusion boundary layers that partly determine the ca-
pacity to acquire inorganic carbon.

4. Strain- and species-dependent response to high COy

Studies often focus on differences between genera or species when
the effects of CO5 levels on physiological rates and toxin contents are
considered. However, an increasing body of evidence suggest that
considerable variations exist within and among genera, species, and
even strains. Examples of this can be found in a range of experiments on
toxic and non-toxic strains of Microcystis aeruginosa in relation to rising
CO2 and the expression of components of the CCM (Jahnichen et al.,
2007; Van de Waal et al., 2009, Van de Waal et al., 2011a,b; Sandrini
et al., 2015a, 2015b, 2016; Yu et al., 2015; Liu et al., 2016; Visser et al.,
2016). Sandrini et al. (2016) cultured five strains of Microcystis aerugi-
nosa in chemostats, initially with equal numbers of each for 175 days
under either 100 pmol CO, mol ™! total gas or 1000 pmol CO, mol™.
Strains with both CCM components were favoured in low COg, but were
partially replaced by strains with only the low affinity CCM component,
one of which produced the cyanotoxin microcystin in high COs. It is of
interest that microcystin may be involved in the acclimation of Micro-
cystis to variations in external COy concentration (Jahnichen et al.,
2007). Sandrini et al. (2016) did not determine growth rates as a func-
tion of inorganic carbon concentration of the individual strains at the
beginning and end of the 175 days to determine if genetic change had
taken place.

The studies above are relatively short-term and hence the responses
are acclimatory, i.e. involving variations in expression of a constant
genome through differential transcriptions. There have also been long-
term experiments on phytoplankton comparing, over times (10-33
months for the required 300-1000 generations for unicellular algae
dividing about once a day) allowing genetic (and epigenetic change)
controls at present-day COy with high—CO» treatments (Collins and Bell,
2004; Reusch and Boyd, 2013; Kronholm et al., 2017; Raven et al.,
2017). There area also studies on the filamentous toxic diazotroph Tri-
chodesmium showing an irreversible (by return to control CO) increase
in growth rate and N fixation after >500 generations growth in high
CO (Hutchins et al., 2015). While in some of these experiments at least
some of the high-CO4 genotypes showed phenotypes that can be inter-
preted as adapted to high CO5 (e.g. faster growth a high CO5 than the
control genotypes), this has not been the case for all experiments
(Low-Décarie et al., 2013).

While most longer-term experiments have not focussed on harmful
algae, Tatters et al. (2013) isolated four potentially harmful di-
noflagellates from a coastal algal bloom and grew them under high or
low pCO;, for one year and found no strong evidence for fitness increases
attributable to the conditioning dissolved CO; concentrations. In cul-
ture, Flores-Moya et al. (2012) grew two clonal strains of the toxic
dinoflagellate Alexandrium minutum for 200 generations at two tem-
perature (20 and 25 °C) and pH (7.5 and 8.0) levels to explore genetic
changes associated with increased CO; (Flores-Moya et al., 2012). The
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differences in growth rate among treatments were statistically signifi-
cant for both strains with specific growth rates decreasing in the order:
(1) grown and measured at pH 7.5 and 25 °C > (2) grown at pH 8.0 and
20 °C = measured at pH 7.5 and 25 °C > (3) grown and measured at pH
8.0 and 20 °C. The difference between (2) and (3) was attributed to
phenotypic acclimation and the difference between (2) and (1) was
attributed to genetic adaptation meaning that 32% of the difference
between (1) and (3) was due to acclimation and 68% was due to
adaptation.

The findings of Flores-Moya et al. (2012) do not necessarily mean
that harmful blooms of Alexandrium minutum will increase in a warmer
and lower pH ocean, since there are many other biotic and abiotic fac-
tors that influence the development of harmful (and other) blooms.
Flores-Moya et al. (2012) also measured the toxin content per cell under
the different treatments, although content did not vary among treat-
ments. Collectively, Alexandrium species from Europe (A. minutum,
Flores-Moya et al., 2012; A. ostenfeldii, Kremp et al., 2012), the west
coast of North America (A. catenella; Fu et al., 2012; Tatters et al.,
2013a), and the east coast of North America (A. catenella; Hattenrath--
Lehman et al., 2015) have displayed strain-specific and mainly accli-
matory increases in growth and/or cellular toxin content when exposed
to increased dissolved CO5 concentrations.

While the presence of CCMs has yet to be confirmed among raphi-
dophytes, there is evidence that high CO, environments promote the
occurrence of HABs formed by this class of algae. For example, in a field
experiment the toxic microalga Vicicitus globosus had a selective
advantage under ocean acidification, increasing its abundance in natural
plankton communities at CO; levels higher than 600 patm and devel-
oping blooms above 800 patm CO; (Riebesell et al., 2018). Separate
studies using two strains of Heterosigma akashiwo (CCMP 2393 and
CCMP 2809) isolated from Delaware Bay (USA) and Puget Sound (WA;
USA), respectively, demonstrated increased growth rates when cultures
were provided high CO3 (750 ppm COg; Fu et al., 2008; Kim et al.,
2013). In addition to growth, there were effects of pH level on swimming
behaviour of H. akashiwo as cells provided with high CO5 displayed
downward swimming behaviour more so than cells grown at ambient
CO5, levels (Kim et al., 2013).

Strain-specific differences have been reported with regard to changes
in toxin production associated with high CO, by P. multiseries with some
groups reporting an increase in growth and toxin production at low pH/
high dissolved COy (Sun et al., 2011; Tatters et al., 2012a,b, Brunson
et al., 2018) and others reporting enhanced toxin production at high pH
(low dissolved COy; Lundholm et al., 2004; Trimborn et al., 2008).
Culture methods, however, varied between the two groups with some
groups (Lundholm et al., 2004; Trimborn et al., 2008) adjusting culture
pH via direct additions of acid/base and others injecting CO5 into cul-
tures (Sun et al., 2011; Tatters et al., 2012a,b), suggesting the enhanced
toxin production as associated with excess carbon from high CO,, an
outcome consistent with Van de Waal’s stoichiometric hypothesis for
toxin production (Van de Waal et al., 2011a,b). There are also differ-
ences in the response to low pH/high dissolved CO, among three strains
of the toxic prymnesiophycean Prymnesium parvum (Lysgaard et al.,
2018). The effect on target organisms of any increased toxin production
under ocean acidification would be exacerbated if the increased effect of
paralytic shellfish toxins on the fitness of the edible mussel Mytilus chi-
lensis (Mellado et al., 2019).

The response of harmful marine macroalgae to elevated dissolved
COs has been explored on a limited basis. Koch et al. (2013) performed a
meta-analysis of >100 species of marine macroalgae to determine that
85% have Cs biochemistry and are capable of using HCO3 and mostly
have CCMs. They concluded that most species are not saturated at cur-
rent ocean DIC and that the photosynthetic and growth rates of marine
macro-autotrophs are likely to increase under elevated dissolved COy
concentrations (Koch et al., 2013). Ulva is well-known for the formation
of harmful (nuisance) green tides along eutrophied coastlines of North
America, Europe, and China (Valiela et al., 1992; Smetacek and
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Zingame, 2013; Zhao et al., 2013; Perrot et al., 2014) and has a CCM
(Maberly, 1990). Consistent with the conclusions of Koch et al (2013),
several species of Ulva have been shown to experience increased growth
rate under elevated CO; concentrations (Bjork et al., 1993; Olischlager
et al., 2013; Young and Gobler, 2016, 2017; Ober and Thornber, 2017;
Young et al., 2018; Gao et al., 2018b); however, some other studies
showed no increase in growth rate with dissolved CO, above the present
air-equilibrium concentration (Rautenberger et al., 2015; Gao et al.,
2016; Reidenbach et al., 2017; Gao et al., 2018a).

Young and Gobler (2016) specifically examined the effect of
increased CO,, increased P, and increased combined N, and of their
interaction, on the growth of the bloom-forming macroalgae Gracilaria
and Ulva on the US east coast. The growth rate of Gracilaria was
increased by elevated CO, but not by elevated combined N or P, while
the growth rate of Ulva was increased by elevated CO,, and by elevated
combined N or P, and, in two experiments, synergistically increased
growth rate with elevated CO5 combined with elevated combined N and
P (Young and Gobler, 2016), a finding consistent with Ober and
Thornber’s (2017) investigation of Ulva from the northeast US. Young
and Gobler (2017) extended this work to investigate competition be-
tween the two macroalgae and natural phytoplankton. Growth of Gra-
cilaria was unaffected by the presence of Ulva or phytoplankton at either
ambient or elevated CO,, while growth of Ulva was inhibited by the
presence of Gracilaria or phytoplankton (Young and Gobler, 2017). The
conclusion was that, under increased CO, Gracilaria outcompetes Ulva,
and dinoflagellates outcompete diatoms under these conditions. Rei-
denbach et al. (2017) and Gao et al. (20182a,2018b) also investigated the
interaction of increased dissolved CO5 with bioavailable N and P on Ulva
spp. and found significant biochemical and physiological changes under
higher CO5 conditions.

While it would be desirable to extend adaptation studies to harmful
macroalgae, even the fastest-growing of the macroalgae (e.g. Ulva) has a
generation time of three to five weeks (Wichard et al., 2015), meaning
the required 300-1000 generations would take at least 210-700 months
(18-58 years). Possible ‘natural experiments’ of marine macroalgae in
enhanced CO; occur at different distances from CO- vents in the Medi-
terranean (Hall-Spencer et al., 2008; Porzio et al., 2011; Cornwall et al.,
2017). These studies show significant differences in macroalgal distri-
bution as a function of CO5 concentration, with imperfect correlation of
the genotypic or phenotypic absence of CCMs and closeness of the
sampling sites to the vent (Hall-Spencer et al., 2008; Porzio et al., 2011;
Cornwall et al., 2017). Interpretation of these data in terms of (geno-
typic) adaptation requires molecular genetic evidence; complications of
interpretation include the generally unknown age of the vents, unre-
stricted genotype loss to, and gain from, water uninfluenced by the vent,
and the role of herbivory in the region.

5. Distinguishing effects of CO, from pH

pH can affect the rates of photosynthesis and growth of algae directly
by altering acid-base balance or via the effects on speciation of DIC (e.g.
Maberly, 1990). In most cases, published studies cannot differentiate
direct pH effects from changes in levels of DIC and the speciation of DIC
(CO,, HCO3 and CO%'). Attempts to differentiate direct pH effects and
inorganic carbon limitation on growth rates in HAB species have been
limited. Studies of Ulva spp. have examined a pH range of 5.6-10.6 and a
range of CO concentrations of 2000 - 0.001 mmol m™%; photosynthesis
occurred at pH 5.6 but was not measured at pH 10.6 (Maberly, 1990;
Drechsler and Beer, 1991). The effects of dissolved inorganic carbon
(DIC) on the growth of three red-tide dinoflagellates (Ceratium (=Tripos)
lineatum, Heterocapsa triquetra and Prorocentrum minimum) were studied
at pH 8.0 and at higher pH values, depending upon the pH tolerance of
the individual species (Hansen et al., 2007). The higher pH levels chosen
for experiments were 8.55 for C. lineatum and 9.2 for the other two
species, as C. lineatum is a more pH sensitive species. At pH 8.0, which
approximates the pH found in the open sea, the maximum growth in all
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species was maintained until the total DIC concentration was reduced
below 0.4 and 0.2 mol m 3 for C. lineatum and the other two species,
respectively. Growth compensation points (concentration of inorganic
carbon needed for maintenance of cells) were reached at 0.18 and
0.05 mol DIC m for C. lineatum and the other two species, respectively.
At higher pH levels, maximum growth rates were lower compared to
growth at pH 8, even at very high DIC concentrations, indicating a direct
pH effect on the growth rate. Moreover, the concentration of
bio-available inorganic carbon (CO5 + HCO3) required for maintenance
of biomass, as well as the half-saturation constants for inorganic carbon,
were increased considerably at high pH compared to pH 8.0. Experi-
ments with pH-drift were carried out at initial concentrations of 2.4 and
1.2 mol DIC m™ to test whether pH or DIC was the main limiting factor
at a natural range of DIC. Independent of the initial DIC concentrations,
growth rates were similar in both incubations until pH had increased
considerably, consistent with operation of CCMs. Thus, these results
demonstrated that growth rates of these three species were mainly
limited by pH, while inorganic carbon limitation played a minor role
only at very high pH levels and low DIC concentrations. The extent to
which these results can be extrapolated to cover red tide dinoflagellates
in general is unknown and clearly more studies are needed on this in the
future. It would also be useful to extend studies to the lower pH limit.

Little is known of how external pH affects the physiology of algae,
but several possibilities have been suggested. High pH may affect the
availability of some macronutrients and micronutrients; the ratio NHs:
NHj increases with increasing pH, and limitation by trace metals, and
metal toxicity, can increase at high pH (Raven, 1990) and low pH
(Hoffmann et al., 2012). A possible explanation for the observed effects
of external pH is that increased extracellular pH increases intracellular,
cytoplasmic, pH (normally near pH 7.4: Smith and Raven, 1979; Raven
and Smith, 1980; Lines and Beardall, 2018) in algae by 0.05 — 0.5 pH
units per unit external pH (Smith and Raven, 1979; Raven, 1980; Raven
and Smith, 1980; Kallasi and Castenholz, 1982; Raven, 1993; Nimer
et al., 1994; Giraldez-Ruiz et al., 1997; Dason and Colman, 2004; Hervé
et al., 2012). Intracellular pH regulates many cellular processes
including enzyme activity such that changes in intracellular pH could
affect cell growth (Smith and Raven, 1979; Raven, 1980, 1993). Such an
effect on growth is demonstrated for the marine planktonic diatom
Thalassiosira weissflogii in Fig. 1A and Fig. 2 of Hervé et al. (2012). In this
diatom, the highest growth rate is at an external pH of 7.8, with a uni-
form increase in internal pH of 0.94 units as external pH is increased by
2.1 units from pH 6.4 to pH 8.5 (Hervé et al. (2012). What is needed to
test the hypothesis that it is the internal pH rather than external pH that
is related to changes in growth rate is altering internal pH with constant
external pH or vice versa and determining the effects on growth rate;
such experiments would be technically very difficult. Experiments on
Skeletonema costatum at increasing external pH, for instance, showed
changes in cellular amino acid content that were related to metabolic
changes and leakage of organic material (Taraldsvik and Myklestad,
2000); however, this does not directly address the role of changes in
external pH. Studies of two dinoflagellate species showed that external
pH changes from 8 to 7 were associated with a lowering of internal pH,
which was suggested to be the cause of the observed decrease in cell
growth rate (Dason and Colman, 2004; see also Kallasi and Castenholz,
1982 and Giraldez-Ruiz et al., 1997).

Therefore, changes in external pH may affect processes involved in
growth that may not be directly associated with photosynthesis. Main-
tenance of a relatively stable intracellular pH is important for microalgal
and macroalgal cells. In spite of changes in external pH, maintenance of
a relatively stable internal pH is associated with energy expenditure that
relates, in the algae examined, to HT/OH™ fluxes across the plasma-
lemma (Smith and Raven, 1979; Raven, 1980; Pucéat, 1999; Gerloff-E-
lias et al., 2006; Smith et al., 2011; Taylor et al., 2011, 2012; DeCoursey
and Hosler, 2015; DeCoursey, 2018). The best investigated algal plas-
malemma H" transport mechanism is a voltage gated H' channel that is
outward rectifying, i.e. only transports protons when the proton
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electrochemical gradient favours passive HT efflux (Smith et al., 2011;
Taylor et al., 2011, 2012; DeCoursey and Hosler, 2015; DeCoursey,
2018); one of the algae examined is the toxin-producing dinoflagellate
Karlodinium veneficium (Smith et al., 2011). Even though there is no
direct energization of the proton efflux through the channel from
biochemical (e.g, ATP) or biophysical (e.g. coupling to Na™ influx)
sources, energy is required to produce the transplasmalemma electro-
chemical potential difference driving passive H' efflux. Such energy
expenses may increase at elevated extracellular pH, diverting energy
from cell growth. Nevertheless, re-emphasising what was stated earlier,
how extracellular pH affects intracellular pH, and how they together
affect growth and photosynthesis certainly deserves more attention in
the future.

6. Co-stressors

Our use of the term ‘stress’ is in the context of the definition of Grime
(1974) and the discussion by Borowitzka (2018). Anthropogenic atmo-
spheric CO» increase is associated globally with increased temperature
and hence shoaling of the thermocline. This is globally associated with
increased mean photosynthetic photon flux density and UV fluxes, and,
especially at lower latitudes, and with decreased nutrient (other than
inorganic carbon) availability (Doney et al., 2012; Walworth et al., 2016;
Raven et al., 2017; Keys et al., 2018). In addition, increased CO is often
associated locally with environmental changes other than the global
changes such as heightened nutrient loading (Cai et al., 2011; Wallace
et al., 2014). Glibert (2019) Hence, prediction of the response of HABs to
changing CO; levels must be considered in the light of other, co-occurring
changes in the ocean including temperatures, nutrients such as combined
nitrogen, phosphorus, iron, and silicon, and photosynthetically available
radiation and UVB. These interactions have been explored for some
phytoplankton species, but have been rarely considered for HABs. Boyd
etal. (2015, 2016, 2018) explored the co-effects of varying levels of light,
nutrients, CO,, temperature, and iron on a strain of Pseudo-nitzschia
multiseries isolated from the Southern Ocean and found that warming and
iron enrichment led to significant growth enhancement but also
concluded that future predictions from experimental outcomes can be
biased if only a subset of multi-stressors is considered (Boyd et al., 2015,
2016, 2018). Boyd et al. (2015, 2016, 2018) did not report on domoic acid
production by this strain, although given the strong effect of high CO,
(Sun et al., 2011; Tatters et al., 2012a,b, Brunson et al., 2018) it seems
likely that trends for toxin production under these stressors could differ
from the growth response. In an experimentally induced autumn phyto-
plankton bloom in the western English Channel, the biomass of the
toxin-producing dinoflagellate Prorocentrum cordatum significantly
increased by combination of elevated COy and increased temperature
(Keys et al., 2018). Clearly, the study of multiple stressors on the growth
and toxicity of HABs is in its infancy.

7. Future directions

As this review has demonstrated, there are many aspects of the ef-
fects of ocean acidification on HABs that are unknown (Table 2), ;1;as
are the effect of HABs, as altered by environmental change, as co-
stessors on aquatic ecosystems (Griffith and Gobler, 2019). Inorganic
carbon concentrations and speciation is highly dynamic in coastal zones,
changing horizontally, vertically, seasonally, and diurnally. While there
have been many studies that have examined how HABs respond to static
levels of high or low pCO;, virtually nothing is known with regard to the
implications of dynamic changes in dissolved CO5 on HABs. Given the
strong temporal and spatial gradients in pH and dissolved CO; in estu-
aries (Fig. 1; Mosley et al., 2010) and the propensity for HABs to verti-
cally migrate and horizontally aggregate, an understanding of the effects
of dynamic CO; levels on HABs is needed.

While there have been dozens of studies of the effects of differing
CO; levels on HABs, it is clear than many more investigations are
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Table 2
Summary of some properties of HAB algae See text for references.
Higher Taxonomy Examples of genera Occurrence of CCM Increased photosynthetic and/or growth rate at high CO, Mixotrophy
Cyanobacteria Microcystis Yes - -
Chlorophyta Ulvophyceae Ulva Yes +/- -
Dinophyta Dinophyceae Alexandrium Yes +/- -+/-(phagotrophy)
Haptophyta Prymnesiophyceae Prymnesium ? +/- +(phagotrophy)
Ochrista Pelagophyceae Aureococcus Aureaumbra ? ? + (osmotrophy)
Ochrista Raphidophyceae Chattonella ? ? +(phagotrophy)
needed. While several strains of HABs experience enhanced growth and/ References

or toxicity under high CO,, many others do not. “Within genera” studies
have found that different species respond differently to high CO,, e.g.
Alexandrium spp from Europe (A. minutum, from Europe (Flores-Moya
et al., 2012) A. ostenfeldii from Europe (Kremp et al., 2012), A. catenella
from the west coast of North America; Fu et al., 2012; Tatters et al.,
2013a), and A. catanella from the east coast of North America (Hatten-
rath-Lehman et al., 2015). Similar differences have been found across
Ulva spp. (Bjork et al., 1993; Olischlager et al., 2013; Rautenberger et al.,
2015; Gao et al., 2016; Young and Gobler, 2016, 2017; Reidenbach
et al., 2017; Thornber et al., 2017; Young et al., 2018; Gao et al., 2018a,
b), and Trichodesmium species (Hutchins et al., 2013). Even within a
given species, different strains may have opposite responses to high and
low CO4, for both prokaryotic HABs (e.g. Microcystis aeruginosa; Sandrini
etal., 2015a, 2015b,2016) and eukaryotic HABs (Lundholm et al., 2004;
Trimborn et al., 2008; Sun et al., 2011; Tatters et al., 2012a,b; Brunson
et al., 2018). Furthermore, almost nothing is known for some classes of
algae (e.g. the Pelagophyceae and Raphidophyceae). Hence, additional
studies on the effects of differing CO; levels on HABs are needed for
broader conclusions to be drawn regarding how changing CO; levels
may influence HABs. Such studies must be carefully designed, ac-
counting for many experimental design factors including the method by
which CO; is delivered to experimental vessels, the time frame of ex-
periments, the proper characterization of the DIC pool including the
careful measurements of at least two of the suite of pH, DIC, dissolved
CO» concentration, alkalinity (Dickson et al., 2007; .Crucially, stand-
ardisation among investigators are needed (Dickson et al., 2007; .
Importantly, *-omics’ should be incorporated when appropriate into
predictions of the effects of environmental change on HABs (Hennon
and Dyhrman, 2019).

Finally, much more effort should devoted to differentiating direct pH
effects from effects of DIC/CO, limitation on physiological rates and
toxin contents. Given that accurate and precise quantification of these
parameters can be a challenge, particularly in high biomass cultures that
are reflective of HABs, collaborative efforts between scientists with
expertise in experimentally culturing HABs and the chemistry of inor-
ganic carbon may be the most fruitful in generating high quality data
sets.
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